MathJax


quinta-feira, 6 de outubro de 2022

Question 8 - BA Model

On the Non-linear preferential attachment, our probability becomes \(Π(k) \sim k^\alpha\). For a starting network with 1 node, approximately how many nodes we have to add on the network for it to achieve \(k_{max} = 100\), considering the cases where \(\alpha\) is \(0.5\), \(1\) and \(1.5\) respectively?

  1. \(22026\) nodes; \(10000\) nodes; \(100\) nodes respectively
  2. \(1024\) nodes; \(1000\) nodes; \(100\) nodes respectively
  3. \(22026\) nodes; \(10000\) nodes; \(200\) nodes respectively
  4. \(1024\) nodes; \(1000\) nodes; \(200\) nodes respectively
  5. None of the above.

  Original idea by: Pedro Henrique Di Francia Rosso

Um comentário:

Question 12 - Dendrogram

Applying a divisive algorithm on the network below, we obtain the following dendrogram: Network  Dendrogram Looking at the dendrogram, we...